https://leetcode.cn/problems/product-of-array-except-self/description/?envType=study-plan-v2&envId=top-interview-150
问题在于不使用除法并且空间复杂度为O(1),当第一次从头开始遍历时由于不知道后续数组元素是什么,所以无法得到答案,而如果当知道一个后续数组元素后,又回去更新答案的话,无疑会提高时间复杂度。不妨这样看待,如果我们已经遍历一次数组并且能够记录下足够的信息的话,那么下次我们再次遍历数组时不就可以相对地知道后续元素的信息了吗。由此推广,为了算法简单一些,我们甚至可以遍历有限次,获得足够的信息,然后一次得到最终答案。
由这样的思路我们再看问题,对于任何一个元素,其除了自身以外的的元素的乘积由两个部分构成,一个是它的前序元素乘积,一个是后续元素乘积。前者可以通过正向的遍历得到,后者通过反向遍历也可以得到,由此答案就明了了;
class Solution {
public:
vector<int> productExceptSelf(vector<int>& nums) {
int len = nums.size();
vector<int> answer(len);
int answer_R[len],answer_L[len];
answer_L[0]=1,answer_R[len-1]=1;
for(int i=1;i<len;i++){
answer_L[i]=answer_L[i-1]*nums[i-1];
}
for(int i=len-2;i>=0;i--){
answer_R[i]=answer_R[i+1]*nums[i+1];
}
for(int i=0;i<len;i++){
answer[i]=answer_L[i]*answer_R[i];
}
return answer;
}
};
同理,其实我们不需要两个数组,只需要一个中间变量记录后续乘积的过程就可以了,这样可以减小空间复杂度;
class Solution {
public:
vector<int> productExceptSelf(vector<int>& nums) {
int len = nums.size();
vector<int> answer(len);
answer[0]=1;
for(int i=1;i<len;i++){
answer[i]=answer[i-1]*nums[i-1];
}
int temp=nums[len-1];
for(int i=len-2;i>=0;i--){
answer[i]=temp*answer[i];
temp=temp*nums[i];
}
return answer;
}
};
本文由博客一文多发平台 OpenWrite 发布!
1.本站内容仅供参考,不作为任何法律依据。用户在使用本站内容时,应自行判断其真实性、准确性和完整性,并承担相应风险。
2.本站部分内容来源于互联网,仅用于交流学习研究知识,若侵犯了您的合法权益,请及时邮件或站内私信与本站联系,我们将尽快予以处理。
3.本文采用知识共享 署名4.0国际许可协议 [BY-NC-SA] 进行授权
4.根据《计算机软件保护条例》第十七条规定“为了学习和研究软件内含的设计思想和原理,通过安装、显示、传输或者存储软件等方式使用软件的,可以不经软件著作权人许可,不向其支付报酬。”您需知晓本站所有内容资源均来源于网络,仅供用户交流学习与研究使用,版权归属原版权方所有,版权争议与本站无关,用户本人下载后不能用作商业或非法用途,需在24个小时之内从您的电脑中彻底删除上述内容,否则后果均由用户承担责任;如果您访问和下载此文件,表示您同意只将此文件用于参考、学习而非其他用途,否则一切后果请您自行承担,如果您喜欢该程序,请支持正版软件,购买注册,得到更好的正版服务。
5.本站是非经营性个人站点,所有软件信息均来自网络,所有资源仅供学习参考研究目的,并不贩卖软件,不存在任何商业目的及用途
暂无评论内容