思路:
首先令 \(nxt1_i\) 表示右侧最近的城市距离(\(id1_i\) 为编号),令 \(nxt2_i\) 表示右侧第二近的城市编号(\(id2_i\) 为编号);可以使用 set
找出离这个城市最近的 \(4\) 个城市(前面两个,后面两个)。
定义:
-
\(f_{i,j}\) 表示从 \(i\) 点出发走 \(2^j\) 轮最后到达的位置。
-
\(dp1_{i,j}\) 表示从 \(i\) 点出发走 \(2^j\) 轮最后 A 走过的距离。
-
\(dp2_{i,j}\) 表示从 \(i\) 点出发走 \(2^j\) 轮最后 B 走过的距离。
初始化:
\[f_{i,0} = id1_{id2_i} \]
\[dp1_{i,0} = nxt2_{i} \]
\[dp2_{i,0} = nxt1_{id2_i} \]
状态转移方程为:
\[f_{i,j} = f_{f_{i,j-1},j-1} \]
\[dp1_{i,j} = dp1_{i,j-1} + dp1_{f_{i,j-1},j-1} \]
\[dp2_{i,j} = dp2_{i,j-1} + dp2_{f_{i,j-1},j-1} \]
此时对于询问 \(1\) 和询问 \(2\):
-
本质上是求出从每个城市出发后 \(A\) 走的距离与 \(B\) 走的距离。
-
那么考虑从高位到低位贪心,即设当前跳到了 \(s\) 点,若 \(dp1_{s,i} + dp2_{s,i} \le x\),可以从 \(s\) 跳到 \(f_{s,i}\),需要令 \(x \gets x – (dp1_{s,i} + dp2_{s,i})\),然后继续遍历 \(i-1\) 位。
-
因为是 A 先开车,所以 A 可能会在最后一轮结束后还能再开上一次,需要特判。
时间复杂度为 \(O((N+Q) \log N)\)。
完整代码:
#include<bits/stdc++.h>
#define Add(x,y) (x+y>=mod)?(x+y-mod):(x+y)
#define lowbit(x) x&(-x)
#define pi pair<ll,ll>
#define pii pair<ll,pair<ll,ll>>
#define iip pair<pair<ll,ll>,ll>
#define ppii pair<pair<ll,ll>,pair<ll,ll>>
#define fi first
#define se second
#define full(l,r,x) for(auto it=l;it!=r;it++) (*it)=x
#define Full(a) memset(a,0,sizeof(a))
#define open(s1,s2) freopen(s1,"r",stdin),freopen(s2,"w",stdout);
using namespace std;
typedef double db;
typedef unsigned long long ull;
typedef long long ll;
bool Begin;
const ll N=1e5+10,M=18,INF=1e18;
inline ll read(){
ll x=0,f=1;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-')
f=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
x=(x<<1)+(x<<3)+(c^48);
c=getchar();
}
return x*f;
}
inline void write(ll x){
if(x<0){
putchar('-');
x=-x;
}
if(x>9)
write(x/10);
putchar(x%10+'0');
}
struct Node{
ll a,b;
ll id;
bool operator<(const Node&rhs)const{
if(a!=rhs.a)
return a<rhs.a;
return b<rhs.b;
}
};
ll n,m,s,x,x0,s0,cnt,dis1,dis2,disa,disb;
ll a[N],nxt1[N],nxt2[N],id1[N],id2[N];
ll f[N][M],dp1[N][M],dp2[N][M];
Node h[N];
vector<Node> V;
multiset<Node> S;
void solve(ll s,ll x){
dis1=dis2=0;
for(int i=M-1;i>=0;i--){
if(dp1[s][i]+dp2[s][i]<=x&&f[s][i]){
dis1+=dp1[s][i],dis2+=dp2[s][i];
x-=dp1[s][i]+dp2[s][i];
s=f[s][i];
}
}
if(nxt2[s]<=x)
dis1+=nxt2[s];
}
bool End;
int main(){
n=read();
for(int i=1;i<=n;i++){
a[i]=read();
h[i]={a[i],a[i],i};
}
S.insert({INF,INF,0});
S.insert({INF-1,INF-1,0});
S.insert({-INF,-INF,0});
S.insert({-INF+1,-INF+1,0});
for(int i=n;i>=1;i--){
V.clear();
V.push_back(*--S.lower_bound(h[i]));
V.push_back(*--S.lower_bound(V[0]));
V.push_back(*S.upper_bound(h[i]));
V.push_back(*S.upper_bound(V[2]));
for(auto &v:V)
v.a=abs(h[i].a-v.a);
sort(V.begin(),V.end());
nxt1[i]=V[0].a,nxt2[i]=V[1].a;
id1[i]=V[0].id,id2[i]=V[1].id;
cerr<<id1[i]<<' '<<id2[i]<<'\n';
S.insert(h[i]);
}
for(int i=1;i<=n;i++){
f[i][0]=id1[id2[i]];
dp1[i][0]=nxt2[i];
dp2[i][0]=nxt1[id2[i]];
}
for(int j=1;j<M;j++){
for(int i=n;i>=1;i--){
f[i][j]=f[f[i][j-1]][j-1];
dp1[i][j]=dp1[i][j-1]+dp1[f[i][j-1]][j-1];
dp2[i][j]=dp2[i][j-1]+dp2[f[i][j-1]][j-1];
}
}
x0=read();
for(int i=1;i<=n;i++){
solve(i,x0);
if(dis2&&(!s0||disa*dis2>disb*dis1)){
s0=i;
disa=dis1,disb=dis2;
}
}
write(s0);
putchar('\n');
m=read();
while(m--){
s=read(),x=read();
solve(s,x);
write(dis1);
putchar(' ');
write(dis2);
putchar('\n');
}
cerr<<'\n'<<abs(&Begin-&End)/1048576<<"MB";
return 0;
}
1.本站内容仅供参考,不作为任何法律依据。用户在使用本站内容时,应自行判断其真实性、准确性和完整性,并承担相应风险。
2.本站部分内容来源于互联网,仅用于交流学习研究知识,若侵犯了您的合法权益,请及时邮件或站内私信与本站联系,我们将尽快予以处理。
3.本文采用知识共享 署名4.0国际许可协议 [BY-NC-SA] 进行授权
4.根据《计算机软件保护条例》第十七条规定“为了学习和研究软件内含的设计思想和原理,通过安装、显示、传输或者存储软件等方式使用软件的,可以不经软件著作权人许可,不向其支付报酬。”您需知晓本站所有内容资源均来源于网络,仅供用户交流学习与研究使用,版权归属原版权方所有,版权争议与本站无关,用户本人下载后不能用作商业或非法用途,需在24个小时之内从您的电脑中彻底删除上述内容,否则后果均由用户承担责任;如果您访问和下载此文件,表示您同意只将此文件用于参考、学习而非其他用途,否则一切后果请您自行承担,如果您喜欢该程序,请支持正版软件,购买注册,得到更好的正版服务。
5.本站是非经营性个人站点,所有软件信息均来自网络,所有资源仅供学习参考研究目的,并不贩卖软件,不存在任何商业目的及用途
暂无评论内容