本文深入探讨语音识别处理环节。
本阶段的重点特性为语音识别、VAD、热词、文本的时间偏移、讲话人的识别等。
语音识别
业界流派众多,比如Kaldi、端到端等,具体选择哪一种,需要综合考虑人员能力、训练数据量和质量、硬件设施、交付周期等,作出相对合理的交付规划。
基于Kaldi的方案,优点在于其发挥稳定,缺点是使用难度比较高,学习曲线比较陡峭,具备使用经验的算法工程师相对比较稀缺。
端到端方案,业界主要基于Google在17年左右发布的文章作为研究、试验的输入,使用Tensorflow或者Pytorch作为训练、工程化的平台,算法工程师的可获得性比较好,但想要获取比较好的效果,仍需要付出相当的努力。
VAD
通常情况下,可以假定人在讲话时,已经结束的句子对于后续语音数据的识别,影响相对比较小。
依据前述假定,可以通过使用VAD有效划分语音识别会话,避免在识别过程中缓存过多的数据,改善语音识别的效率,降低实现的难度,降低对硬件资源的占用情况。
另外可以基于VAD实现断句,即依据前述假定:
- 对于10秒以内的语音数据,语音识别过程中的断句可以忽略不考虑,此时可以完全不实现断句。
- 对于超出10秒的语音数据,需要考虑实现断句。
热词
顾名思义,热词的作用在于提示语音识别系统,帮助语音识别系统输出相对靠谱的识别结果。
比如台州和泰州,在标准普通话中,二者发音接近,仅音调存在差异,考虑到口音和发音习惯的影响,假如听众不结合对话的上下文,可能无法正确有效的识别出具体的结果。
对于语音识别系统而言,假如事先给定台州作为热词,则在遇到类似发音时,在输出结果中使用台州,则可以有效改善识别结果的准确性。
实现热词时,可以有不同的选择。
从产品的角度,可以热词作为系统级和会话级。
- 系统级热词,语音识别系统在启动时加载相关数据。
- 会话级热词,用户在调用接口时,传入本次会话中可能使用到的热词。
从加载数据的时机,语音识别系统可以考虑提供静态或者动态的支持。
- 静态,即将热词作为语言模型的一部分,在语音识别过程中固定增加一个环节,用于使用相关数据来校正语音识别的结果。
- 动态,与静态类似,同样需要在语音识别过程中增加固定环节,用于使用这部分数据来校正语音识别的结果。
对前述方案进行组合,对比各实现:
-
系统级热词和静态加载
优点是实现比较简单,缺点是更新热词的模型时,需要重启语音识别系统,在重启过程中将无法对外部提供服务。 -
系统级热词和动态加载
实现复杂度有所上升。在更新热词的模型时,考虑到为了保障业务不中断,可能需要保留两个模型的数据,并且隔离相关请求的处理,这增加了实现的复杂度,同时增加了对硬件资源的消耗。 -
会话级热词和静态加载
假如用户请求中包含热词,则使用热词对应的模型来改善识别结果;假如用户提供的热词超出了系统已加载模型可支持的范围,则无法支持。 -
会话级热词和动态加载
优点是功能最灵活。缺点是实现复杂度最高,增加了对硬件资源的占用,并且增加了处理时延。
不过目前没有看到比较优雅、高效的实现,比较遗憾。
文本的时间偏移
本特性作为语音识别环节的副产品输出,但重要性非常高,可以有效支撑标点符号、大小写等特性的实现,满足字幕相关业务的交付。
基于Kaldi实现的语音识别引擎,声学模型+发音词典+语言模型,实现思路如下:
将语音数据送入识别引擎,引擎除输出识别得到的文本,同时可以得到音素的列表,以及各音素在音频数据中出现的时间偏移量,此时结合文字或者单词和音素之间的映射关系,即可推算出文字或者单词出现在语音数据中的时间偏移量。
本方案比较简单,实现的难度不大,同时对性能、硬件资源的消耗比较小。
不过对于发音词典有要求,一要数据全面,二要标记准确。
不过考虑到人在讲话时,某些字或者单词的发音中可能出现无意义的重复音,这可能导致从音素序列还原为文字或者单词时出现匹配失败的现象,进而导致文本时间偏移的输出的结果不准确,或者完全失败。
讲话人的识别
一般情况下,一段语音数据中存在多人讲话的场景还是比较多的,比如会话录音、公开课、电话录音等。
在语音识别领域,本特性是一个比较复杂的话题。实际应用时,本特性并不是一个必需的特性。比如可以通过人工处理语音识别的结果,结合录音数据,将不同的人的文本区分开。但假如语音识别结果可以提供必要的辅助信息,无疑将改善后期人工投入的工作量。
从人的发音特征上来说,不同人讲话的声音具备一定的唯一性,业界称之为声纹,业界已经有产品利用这一特点,交付比如考勤系统、门禁系统等应用,支撑特定行业的应用。
基于前述理论基础,在语音识别过程中,可以基于时间,将输入的语音数据切割为等分的时间段,使用机器学习的方式,为每个时间段打上标签,结合语音识别结果中的时间偏移的信息,将不同的文本打上各自讲话人的标签。
由于本特性当前没有实际商用的场景,因此暂未在项目中实践前述想法。
1.本站内容仅供参考,不作为任何法律依据。用户在使用本站内容时,应自行判断其真实性、准确性和完整性,并承担相应风险。
2.本站部分内容来源于互联网,仅用于交流学习研究知识,若侵犯了您的合法权益,请及时邮件或站内私信与本站联系,我们将尽快予以处理。
3.本文采用知识共享 署名4.0国际许可协议 [BY-NC-SA] 进行授权
4.根据《计算机软件保护条例》第十七条规定“为了学习和研究软件内含的设计思想和原理,通过安装、显示、传输或者存储软件等方式使用软件的,可以不经软件著作权人许可,不向其支付报酬。”您需知晓本站所有内容资源均来源于网络,仅供用户交流学习与研究使用,版权归属原版权方所有,版权争议与本站无关,用户本人下载后不能用作商业或非法用途,需在24个小时之内从您的电脑中彻底删除上述内容,否则后果均由用户承担责任;如果您访问和下载此文件,表示您同意只将此文件用于参考、学习而非其他用途,否则一切后果请您自行承担,如果您喜欢该程序,请支持正版软件,购买注册,得到更好的正版服务。
5.本站是非经营性个人站点,所有软件信息均来自网络,所有资源仅供学习参考研究目的,并不贩卖软件,不存在任何商业目的及用途
暂无评论内容