【scikit-learn基础】–『分类模型评估』之评估报告

分类模型评估时,scikit-learn提供了混淆矩阵分类报告是两个非常实用且常用的工具。
它们为我们提供了详细的信息,帮助我们了解模型的优缺点,从而进一步优化模型。

这两个工具之所以单独出来介绍,是因为它们的输出内容特别适合用在模型的评估报告中。

1. 混淆矩阵

混淆矩阵Confusion Matrix)用于直观地展示模型预测结果与实际标签之间的对应关系。
它是一个表格,其表示实际的类别标签,而表示模型预测的类别标签。

通过混淆矩阵,可以清晰地看到模型的哪些预测是正确的,哪些是错误的,以及错误预测的具体分布情况。

1.1. 使用示例

下面用手写数字识别的示例,演示最后如何用混淆矩阵来可视化的评估模型训练结果的。
首先,读取手写数字数据集(这个数据集是scikit-learn中自带的):

import matplotlib.pyplot as plt
from sklearn import datasets

# 加载手写数据集
data = datasets.load_digits()

_, axes = plt.subplots(nrows=2, ncols=4, figsize=(10, 6))
for ax, image, label in zip(np.append(axes[0], axes[1]), data.images, data.target):
    ax.set_axis_off()
    ax.imshow(image, cmap=plt.cm.gray_r, interpolation="nearest")
    ax.set_title("目标值: {}".format(label))

然后,用支持向量机来训练数据,得到一个分类模型(reg):

from sklearn.svm import SVC

n_samples = len(data.images)
X = data.images.reshape((n_samples, -1))
y = data.target

# 定义
reg = SVC()

# 训练模型
reg.fit(X, y)

最后,用得到的分类模型来预测数据,再用混淆矩阵来分析预测值真实值

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

# 用训练好的模型进行预测
y_pred = reg.predict(X)

cm = confusion_matrix(y, y_pred)
g = ConfusionMatrixDisplay(confusion_matrix=cm)
g.plot()

plt.show()

图片[1]-【scikit-learn基础】-『分类模型评估』之评估报告 - 玄机博客-玄机博客
混淆矩阵中,横轴是预测值,纵轴是真实值。
对角线上预测值与真实值符合的情况,可以看出模型分类效果不错,大部分数据都能正确分类的。

也有极个别分类错误的情况,比如:

  • 8被识别成1的错误有2个
  • 5被识别成9的错误有1个
  • 9被识别成3的错误有1个
  • … … 等等

2. 分类报告

分类报告提供了模型在各个类别上的详细性能指标。
通常包括准确率Precision)、召回率Recall)、F1分数F1-Score)等评估指标,这些指标能够帮助我们更全面地了解模型的性能。

2.1. 使用示例

基于上面训练的手写数字识别模型,看看模型的各项指标。

from sklearn.metrics import classification_report

# 这里的y 和 y_pred 是上一节示例中的值
report = classification_report(y, y_pred)
print(report)

图片[2]-【scikit-learn基础】-『分类模型评估』之评估报告 - 玄机博客-玄机博客
报告中列出了手写数字0~9的识别情况。

3. 总结

总的来说,分类报告混淆矩阵一起使用,能够更全面地评估模型的性能,指导模型的优化和改进。
而且它们生成的评估表格和图形,也能够应用于我们的分析报告中。

玄机博客
© 版权声明
THE END
喜欢就支持一下吧
点赞10 分享
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

取消
昵称表情代码图片快捷回复

    暂无评论内容